
 

 
SANDIA REPORT 
 

SAND      
Unlimited Release 
Printed       

 
 

Uniprocessor Performance Analysis of a 
Representative Workload of Sandia 
National Laboratories' Scientific 
Applications 

CHARLES LAVERTY 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 



 

 

 
Issued by Sandia National Laboratories, operated for the United States Department of Energy by 

Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 

States Government.  Neither the United States Government, nor any agency thereof, nor any of 

their employees, nor any of their contractors, subcontractors, or their employees, make any 

warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, product, or process disclosed, or 

represent that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government, any agency thereof, or any of their contractors or subcontractors.  The 

views and opinions expressed herein do not necessarily state or reflect those of the United States 

Government, any agency thereof, or any of their contractors. 

 

Printed in the United States of America. This report has been reproduced directly from the best 

available copy. 

 

Available to DOE and DOE contractors from 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN  37831 

 

Telephone: (865)576-8401 

Facsimile: (865)576-5728 

E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.osti.gov/bridge  

 

 

 

Available to the public from 

U.S. Department of Commerce 

National Technical Information Service 

5285 Port Royal Rd 

Springfield, VA  22161 

 

Telephone: (800)553-6847 

Facsimile: (703)605-6900 

E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 

 

 
 
2 



 

 

 
  

  
 



UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE 

WORKLOAD OF SANDIA NATIONAL LABORATORIES’  

SCIENTIFIC APPLICATIONS 

BY 

CHARLES LAVERTY, B.S. 

 

 

A thesis submitted to the Graduate School  

in partial fulfillment of the requirements 

for the degree 

Master of Science in Electrical Engineering 

 

 

 

New Mexico State University 

Las Cruces, New Mexico 

June 2005 



 ii

“Uniprocessor Performance Analysis of a Representative Workload of Sandia 

National Laboratories’ Scientific Applications,” a thesis prepared by Charles 

David Laverty in partial fulfillment of the requirements for the degree, Master 

of Science in Electrical Engineering, has been approved and accepted by the 

following: 

 
 
 
Linda Lacey 
Dean of the Graduate School 
 
 
 
 
Jeanine Cook 
Chair of the Examining Committee 
 
 
 
 
Date 
 
 
Committee in charge: 
 
 Dr. Jeanine Cook, Chair 
 
 Dr. Erik DeBenedictis 
 
 Norris Green 
 
 Dr. Steven Stochaj 
 



 iii

VITA 
 

 
February 26, 1980  Born in Taos, New Mexico 
 
1998    Graduated from Cimarron High School,  
    Cimarron, New Mexico 
 
1998-2002   B.S, New Mexico State University, New Mexico 
 
2002-2005   Graduate Assistant 
    College of Engineering 
    New Mexico State University 
 

 
 

Field of Study 
 
 

Major Field: Electrical Engineering (Computer Engineering) 



 iv

 ABSTRACT  

UNIPROCESSOR PERFORMANCE ANALYSIS OF A REPRESENTATIVE 

WORKLOAD OF SANDIA NATIONAL LABORATORIES’  

SCIENTIFIC APPLICATIONS 

 

Master of Science in Electrical Engineering 

New Mexico State University 

Las Cruces, New Mexico, 2005 

Dr. Jeanine Cook, Chair 

 

Throughout the last decade computer performance analysis has 

become absolutely necessary to maximum performance of some workloads.  

Sandia National Laboratories (SNL) located in Albuquerque, New Mexico is 

no different in that to achieve maximum performance of large scientific, 

parallel workloads performance analysis is needed at the uni-processor level. 

A representative workload has been chosen as the basis of a computer 

performance study to determine optimal processor characteristics in order to 

better specify the next generation of supercomputers. Cube3, a finite element 

test problem developed at SNL is a representative workload of their scientific 

workloads. This workload has been studied at the uni-processor level to 

understand characteristics in the microarchitecture that will lead to the overall 

performance improvement at the multi-processor level. The goal of studying 
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this workload at the uni-processor level is to build a performance prediction 

model that will be integrated into a multi-processor performance model which 

is currently being developed at SNL. Through the use of performance 

counters on the Itanium 2 microarchitecture, performance statistics are 

studied to determine bottlenecks in the microarchitecture and/or changes in 

the application code that will maximize performance. From source code 

analysis a performance degrading loop kernel was identified and through the 

use of compiler optimizations a performance gain of around 20% was 

achieved.
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1. INTRODUCTION 

High performance computing has always been an integral part of our 

National Laboratories. As of November 2004, out of one hundred of the 

fastest computers in the world around twenty percent of them are located on 

National Laboratory grounds [1]. The workloads used on these 

supercomputers are scientific in nature, simulating various scientific 

phenomena such as projectile collisions and nuclear detonation, many of 

which the government uses to simulate physical problems that are not 

feasible to test in the real-world. Microarchitecture improvements can help to 

reduce the extensive runtime of these simulations. Performance analysis of 

these workloads is used to determine where bottlenecks occur in various 

microarchitecture components and/or where improvements to the application 

code will result in decreased execution time. From the various methods of 

performance analysis a study has been conducted on a representative 

workload of SNL’s scientific applications. This study will aid in understanding 

the workload behavior throughout all phases of its execution and aid in 

identifying the causes poor performance, hopefully generating incite that will 

lead to changes in hardware or software, that enables speedup of these types 

of applications. These studies will provide the necessary information to 

enable generation of an analytic performance model at a uni-processor level 

which will be implemented in another multiprocessor model to help in the 

decision of future computing efforts at SNL. 
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2. BACKGROUND 

A few concepts need to be understood in order to understand the 

performance of this representative workload at SNL. This section discusses 

the background concepts needed to understand the results presented in 

Section 6. This section is organized by presenting a short background to 

computer performance analysis in Section 2.1. Then a background of the 

microarchitecture of the Intel Itanium 2 architecture, which was the 

architecture that this analysis was conducted on, will be presented in 2.2. 

Section 2.2 and 2.3 will discuss some of the tools used to collect 

miscellaneous statistics in the performance study. Finally in Sections 2.5-2.7 

discussion on background of the actual workload will be presented in order to 

help understand its performance characteristics.  

2.1. Computer Performance Analysis 

Computer performance analysis is the art of studying various 

workloads on different architectures to understand what can be done to 

maximize the performance of the workload on a specific architecture or to 

understand what architecture executes the workload the fastest and why. The 

main statistics that are studied for computer performance analysis are 

instructions per cycle (IPC) or cycles per instruction (CPI), execution time, as 

well as cache statistics, and stall statistics. 

IPC is the number of instructions completed per cycle averaged over 

the entire application execution.  For example, if two different processors 
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running the same application complete one instruction per cycle (max IPC per 

machine is one) and if the workload takes 1000 instructions to complete and 

on one processor it takes 2000 cycles (amount of time based on clock 

frequency) and takes 1000 cycles on another machine their IPC’s are 0.5 and 

1, respectfully. This states that the second processor is better due to the fact 

that it utilizes its architecture better even though the execution time (clock 

time) could be slower. So the combination of these two statistics is a major 

determination of how a processor performs.  

Modern day microarchitectures have the ability to complete more than 

one instruction per cycle due to various architecture innovations such as the 

addition of multiple pipelines. Pipelines allow architectures the ability to break-

up the execution time of an instruction into smaller pieces allowing for faster 

clock frequencies and for various pieces of different instructions to be in the 

pipeline at a single time. Performance degradation of these pipelined 

architectures comes from stalls in the pipeline, which occurs mainly when 

data is being brought in from disk or memory which is much slower than the 

processor. That is why cache statistics are also important in studying 

performance of architectures. Caches are small fast memory that help speed 

up the data access of disks or memory. The memory hierarchy of a 

contemporary computer is shown in Figure 1 where the registers are the 

closest to the CPU and the secondary storage is further away from the CPU. 



 

Figure 1 Processor Memory Hierarchy 
 
The hierarchy starts with the slower secondary storage which runs at a speed 

of around 8ms and a bandwidth of around 20MB/sec [2]. The next level, main 

memory, runs at a speed of around 50ns and a bandwidth of 100MB/sec. The 

faster on-chip memories called cache run at a speed of a couple of 

nanoseconds and have a bandwidth in the gigahertz range. The highest level 

of the memory is the processor registers which run the fastest at around sub-

nanosecond and at gigahertz bandwidth. The slower memory also is the 

cheapest as compared to the expensive on-chip registers and cache.   

Many processors try to conceal the performance degradation 

contributed by the slow access time of caches by hiding the latency involved 

with a memory access. This is achieved by the use of processors that 

execute instructions out-of-order. This allows instructions following an 

instruction that is waiting for data to be computed while that instruction in 

waiting. When the instruction has its data from memory then the instructions 

are reassembled back to their program order. The key factor to hiding the 
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latency of a memory access comes down to the available parallelism within 

an application. In other words, if an instruction can not execute out-of-order 

then it is dependent on a previous instruction and if that previous instruction 

can not complete because it is waiting for one of its operands to be brought in 

from memory it also has to wait. There are always limits to the parallelism that 

can be extracted within an application due to the nature of its implementation.   

The use of various performance analysis techniques enables 

designers to optimize the hardware design to excel performance of some 

workloads. There are three main approaches to performance analysis: 

Analytic methods, Simulation methods, and Direct Measurement methods. 

Analytic methods are techniques by which the behavior of the 

microarchitecture components is represented by mathematical equations or 

queuing models. The advantage of using analytic modeling is the time to 

achieve an answer is very small but it is very difficult to represent the 

behaviors and interactions of complex structures of modern day architectures 

because of their complexity. So the accuracy of such models is very limited.  

Another method of performance evaluation is through the use of 

simulators. Simulators are very useful in performance analysis due to their 

robustness. However, a simulator is very difficult to implement because it is 

modeling a real world machine through software, making the development 

time costly. The accuracy of a simulator is always a concern because it is 

very difficult to model a processor through software.  Most simulators provide 
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the designer with many performance metrics and simulator code can be 

modified to incorporate any changes to the microarchitecture that the 

designer desires such as modifying the cache organizations, memory 

bandwidth, and queue sizes. Simulators have one major drawback and that is 

the execution time. The runtime of an application on a cycle-accurate 

simulator usually takes 100 to 1000 times the native applications execution 

time.  

The last of the performance analysis tools is direct measurement of 

physical systems. Through the use of on-chip hardware counters 

performance data can be collected during native execution of an application 

as well as during operating system activity. The problem with hardware 

counters is that in most modern computers processor real estate is limited 

and thus there are typically only four to eight counters that enable the study of 

an application, which leads to very limited performance studies. Also, there 

are some variations between runs of the same application due to overhead 

involved with the operating system and cache activity but normally is less 

than 0.5% error between runs. 

In this paper the majority of the performance analysis is done through 

the use of hardware performance counters. Intel’s® Itanium® 2 

microarchitecture provides one of the most extensive performance monitoring 

units for capturing performance data. The next section provides an overview 

of this architecture. 



 7

2.2.  Intel® Itanium 2® 

The Itanium 2 microarchitecture was a collaborative effort between HP 

and Intel and was released in July 2002. It is a 64-bit, VLIW (very long 

instruction word) architecture executing up to six instructions at a time. The 

VLIW in the Itanium 2, consists of groups of three instructions; these groups 

are called bundles. The three instructions in a bundle are independent and 

can, therefore, execute in parallel on the multiple functional units in the 

Itanium 2. It has four floating-point units, two capable of executing one FMA 

per cycle while the other two perform other floating-point operations such as 

comparisons, but only two floating-point operations can be executed in 

parallel [3] . Also the Itanium 2 has two integer, three branch, and four 

memory execution units in its parallel execution pipelines, for a total of 12 

functional units. The Itanium 2’s pipeline is shown in Figure 2. Each 

instruction bundle is encoded by the type of resource that can execute in 

parallel (i.e. memory, floating-point, and branch instructions comprise a MFB 

bundle). The Itanium 2 issues two bundles per cycle to its in-order core.  

Through the use of VLIW technology, the Itanium 2 does not need a 

complex out-of-order pipeline to achieve performance improvement, allowing 

the architecture real estate to be used for a more complex memory system 

and a large set of architectural registers. The VLIW places much 

responsibility on the compiler to achieve the maximum instruction throughput. 

The microarchitecture highlights are shown in Figure 3 [4]. The cache 



configurations of the Itanium 2 processor used in our studies are listed in 

Table 1. The cache hierarchy of the Itanium 2 populates most of the area on 

the chip since the processor core is smaller for an in-order processor 

compared to out-of-order cores normally used in today’s microcomputers. 

Overall, the Itanium 2 is a good choice for running the performance analysis 

of this representative application of SNL’s scientific applications because of 

the large caches, the high performance of scientific applications cited in 

various studies, and the large number of performance metrics that the 

performance monitoring unit allows for collection which is discussed in the 

next section. 
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Figure 2 Itanium 2 Processor Pipeline 



 

Figure 3 Itanium 2 Microarchitecture Features 
 

Table 1 Itanium 2 Cache Configurations 
  L1D L2 L3 

Access Time 1 5+ 12+ 
Size 16 KB 256 KB 1.5MB 

Line Size 64 bytes 128 bytes 128 bytes 
Number of Lines 256 2048 24576 
Associative Sets 4 8 12 

Sets 64 256 2048 

Update Policy 
Write-

Through 
Write-
Back 

Write-
Back 

Banks 8 "groups" 16 1 

Line 
Replacement 

Not 
Recently 

Used 

Not 
Recently 

Used 

Not 
Recently 

Used 
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2.2.1. Performance Monitoring Unit 

The Itanium 2’s performance monitoring unit (PMU) is an important 

component of the architecture that allows a developer to tune their code to 

achieve maximum performance through the use of hardware performance 

counters. The PMU has the ability to track counts of around 500 different 

metrics which are collected on four different hardware counters. The metrics 

that can be counted range from simple memory statistics (misses, references, 

etc.) to branch miss-prediction rates to complex opcode matching (shown 

below). The Itanium 2’s PMU is one of the most complex ever implemented 

which influences our choice of this architecture for performance analysis. One 

advantage to using the Itanium’s PMU is its bubble counters that can be used 

to understand the major contributions of all stalls throughout application 

execution. A detailed explanation of the bubble analysis is included in Section 

6.3. The events that the PMU can monitor can be broken down into various 

categories [5]. These categories are: 

• Basic Events: Clock cycles, retired instructions 

• Instruction Dispersal Events: Instruction decode and issue 

• Instruction Execution Events: Instruction execution, data and 

control speculation, and memory operations. 

• Stall Events: Stall and execution cycle breakdowns. 

• Branch Events: Branch prediction. 

• Memory Hierarchy: Instruction and data caches. 

• System Events: Operating system monitors. 

• TLB Events: Instruction and data TLB’s. 

• System Bus Events: Events on the system bus 
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• RSE Events: Register Stack Engine. 

 

2.3. PERFMON 

There are several software interfaces to the performance-monitoring 

unit including HP’s PERFMON and Intel’s Vtune. We chose to use both 

although the majority of the statistics were collected using PERFMON 

because of its ease of use and its ability to batch process the workload using 

the PERFMON software. PERFMON was a project developed by Hewlett 

Packard as a standard kernel interface for the Performance Monitoring unit of 

the Itanium and Itanium 2 architectures [6]. The software consists of a library 

called libpfm and a monitoring tool called pfmon. PERFMON provides full 

access to the PMU of the Itanium family of architectures. It provides the ability 

to monitor system or per-process sessions, as well as providing the capability 

of sampling events or just cumulative counts of the available metrics.  

Pfmon has many features in which a user can customize performance 

counts. We used pfmon version 3.0 on our system. The basic usage of the 

pfmon command is shown in Figure 4. In this example, two metrics are 

counted, CPU cycles and instructions retired with the results of each being 

436,368 and 513,437, respectively. With performance counters there is 

always a deviation from one run to another. For the command shown in 

Figure 4 a total of ten runs were completed and the percent error in 

instructions was less than 0.01 percent; for the CPU cycles the max percent 

error was around 0.65.  



 

Figure 4 PFMON Usage 
  

In Figure 4 the –e specifies the event to be counted (up to four can be 

counted at a time) and ls /dev/null is the command to be monitored. Through 

the use of -header the output will include output useful information about your 

system and the performance session started by pfmon. A sample output 

using the –header option is seen in Figure 5. Some of the key information 

shown in Figure 5 is the cache hierarchy configuration of the system as well 

as how the output data of the sampling session is organized.  

Sampling events can be very useful information when studying a 

workload because you can determine execution phases within the program 

that cause performance degradation. Using pfmon, a sampling period in 

which two statistics are used can be specified, one event is used to choose 

when to sample the other. For example, the user can specify to sample 

CPU_CYCLES every one hundred thousand IA64_INST_RETIRED. From the 

number of cycles and the number of instructions, instructions per cycle (IPC) 

can be computed. IPC is a composite metric that is used to measure overall 

performance of a micro-architecture, which was discussed in Section 2.1. 

Figure 5 also shows an example of how to implement sampling (look for 

“command”). Plots of such interval data will be shown in Section 6. The PMU 
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of the Itanium 2 allows for various other software to interface with it such as 

Vtune which is described in the next section. 

 

Figure 5 Sample Output of PFMON 
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2.4. Vtune 

Vtune is a performance tool used to tune an application for maximum 

performance [7] through the use of profile and call graph results. The call 

graph and profile data allows Vtune to sort the functions by actual time spent 

throughout execution. This helps to identify sections of code where most of 

the execution is spent which are called hotspots. Once the hotspots have 

been identified by Vtune, it allows a user to double-click on a function within 

the call graph in the graphical user interface and backtrack to the actual 

source-code. Vtune also interfaces to the performance counters of the 

Itanium 2, Xeon, or Pentium and can perform sampling sessions just as 

PERFMON does on the Itanium 2 discussed in Section 2.3. Vtune is used in 

this work to help understand the application under study and to help 

determine sections of code that are used frequently within that application.  

2.5.  Trilinos  

The applications that simulate large-scale physical systems are very 

mathematical in nature requiring the solution of many different linear and non-

linear systems of equations, both time-dependent and independent [8]. At the 

core of these types of applications are various mathematical solvers that 

implement different algorithms to solve these systems of equations.  Scalable 

solver algorithms and software development have long been an area of focus 

at Sandia National Laboratories. In the past, the development of these 

algorithms and applications was done by the individual scientist and each 
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created their own code even though many codes implemented the same 

underlying solver algorithm. The development of these codes was very time 

consuming and expensive. The Trilinos Project was created at Sandia to 

develop a reusable set of solvers to help reduce development time and 

overall expense. The Trilinos Project is a highly evolved system of libraries or 

packages that has been created as a basis for future complex application 

development and is currently in use at Sandia National Laboratories. Trilinos 

is used by many of the scientific applications at Sandia. The representative 

workload used in this work also uses the Trilinos set of solvers to solve its 

equations. 

The various packages used by Trilinos are each independent of one 

another although some packages can be used in conjunction with other 

Trilinos packages. Some of the packages used in this work include:  

• Aztec00 - provides an object-oriented interface the well-known Aztec 

solver library. It also allows flexible construction of matrix and 

vector arguments via Epetra matrix and vector classes. 

•  Epetra - provides the fundamental construction routines and 

services that are required for serial and parallel linear algebra 

libraries. Epetra provides the underlying foundation for all 

Trilinos solvers. 

•  ML - is a multigrid preconditioning package intended to solve large 

sparse linear systems of equations arising from primarily 

elliptic Partial Differential Equation discretizations. 
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The representative Sandia application that we use in this work (which is 

described in Section 5) primarily uses the Epetra and the AztecOO packages. 

The Epetra package is the primary package used to create and fill matrices 

used in many scientific applications and the AztecOO package is the primary 

solver used in the representative workload. The Trilinos Project and its 

packages are described in detail in the Trilinos Tutorial [9], as well as other 

Trilinos documentation [10, 11]. 

 
2.6. Finite Element Method  

The representative workload used in this work makes use of the finite 

element method to solve a physical system. Some background in the finite 

element method helps to understand the execution of the representative 

application, 

2.6.1. Overview 

The basis of the math used in scientific applications is the use of 

Partial Differential Equations (PDE’s). PDE’s are used to model physical 

phenomena though the use of equations that describe the relationship of 

physical quantities such as forces, temperature, chemical reactions, and 

velocity by partial derivatives. If the physical system is very large in nature it is 

generally not possible to obtain a solution satisfying the governing PDE’s and 

so the process of subdivision of the physical system into smaller portions is 

used which is known as finite-element discretization. There are various ways 

to discretize partial differential equations. In this work we focus on the Finite 



Element Method (FEM), as opposed to Finite Difference and Finite Volume 

Methods.  

Finite element analysis (FEA) or FEM allows a large naturally occurring 

physical phenomenon to be represented by mathematical equations and to be 

solved in parts and then combined to solve the entire problem. Through this 

divide and conquer scheme a problem is divided into parts called elements 

and the regions where the elements connect are called nodes. There are 

various ways of constructing elements in a finite element problem. Elements 

that are one, two, or three dimensional in nature will show the definition of the 

physical object in more or less detail. Figure 6 shows various shapes of 

elements in various dimensions. The tetrahedral element is the most widely 

used because it can closely model any physical shape whereas the 

hexahedral element will best model a rectangular shape. 

 

Figure 6 Element Types 
 
 

Finite element analysis has six steps in the solution procedure: 

1. Discretize the continuum 

2. Select interpolation functions 
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3. Find the element properties 

4. Assemble the element equations 

5. Solve the global equation system 

6. Compute additional results 

Once a physical system is realized the first step is to discretize the physical 

continuum into elements and nodes, which are stored as element connectivity 

lists usually stored in an array. The nodes are the vertices or corners of the 

elements shown in Figure 6. The nodal coordinates are also stored in an 

array.  Step two is to select the interpolation functions that are used to track 

various interactions between the variables over the element such as 

displacement. Each element is defined using this interpolation function to 

describe its behavior between its endpoints (nodes) based on various 

equations describing the physical phenomenon. Once the element has been 

discretized and the interpolation functions have been realized, the matrix 

equations which relate the nodal values to their unknowns for the element 

need to be established. Once the equations are established for each element 

the assembly process begins in which the global equation is assembled 

element by element according to each element’s connectivity list. The global 

equation represents the whole physical object that the FEM is modeling. 

Before the global equation can be solved boundary conditions must be 

implemented which describe the physical force or strains on the physical 

object. The global equation is typically a matrix-vector multiply in the form: 



}]{[}{ xAf =  Equation 1 

 
where A is the matrix that represents the known coefficients and x represents 

the unknown values (in vector form). A is also known as the global stiffness 

matrix. Once the solution is complete there are times when additional results 

other than coordinate displacements need to be computed such as 

temperature variations within the original object modeled.  

In finite element analysis there are many different solution techniques 

and/or ways of generating/assembling the matrices used in the calculations 

but all generally result in the same final equation of a matrix-vector or matrix-

matrix multiply [12, 13, 14, 15, 16]. 

2.6.2. Assembly 

The assembly process of the finite element method is the process of 

assembling the global stiffness matrix from the individual elements to 

characterize the unified behavior of the entire system. This is carried out 

using the element connectivity lists, which makes up the global numbering 

system of the problem and states how the elements are connected to realize 

the actual physical object. When assembling the matrix the contribution of 

each element is added to the global matrix. An example of the assembly 

process of a linear system with one variable is shown in the following 

example. 
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Figure 7 Assembly Example Problem 
 

Figure 7 is a one dimensional physical system in which there is one 

degree of freedom (one-direction, i.e. x-direction).  Figure 6 shows the 

physical system separated into four elements with five nodes joining the 

elements. The connectivity list of the finite element problem in Figure 7 is 

shown in Figure 8.  Each element has two nodes numbered one and two as 

well as a global number associated with each node as shown in Figure 8. 

 

Figure 8 Connectivity List 
 

The element connectivity list shown in Figure 8 states how the 

example in Figure 7 will be assembled into a global matrix. Each element will 

contribute a 2x2 matrix to the global matrix because each element has two 

nodes associated with it. Each element contributes the 2x2 matrix shown in 

Figure 9. The value located in (1,1) (e.g., row one, column one) represents 

the contribution of node one and the value of (2,2) represents the contribution 
 20



of node two for each element. The values in Figure 9 are arbitrary in that the 

values were chosen for simplicity to show the assembly process. The 

negative values represent the connection between the nodes meaning nodes 

one and two are connected in the element. 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

 

Figure 9 Element Contributions 
 

The assembly process takes each individual element’s 2x2 matrix and places 

it in the final matrix based on the column/row of the global node number 

shown in Figure 8.  

 

Figure 10 Assembly Process 
 
The global matrices shown in Figures 10a-e each have five rows and columns 

because the object in Figure 7 has five nodes. When an element has shared 

nodes with another element the values associated with that node are additive 

 21
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em.  

iagonal of the matrix. Sparse matrices are described in detail in 

Sectio

 on 

l of 

 

aph 

tant role in performance and behavior of these finite 

ms.  

in the global matrix (Shown in Figure 10b, c, d). This is also shown in detail in

section 3.6.4. Figure 10a shows the individual contribution of element one to

the global matrix; Figure 10b shows the contribution of element two; Figure 

10c shows element three; and Figure 10d shows element four’s contribution. 

Each element’s contributions are added to the global matrix. Figure 10e is the 

final A matrix which is the global stiffness matrix of the finite element probl

This final global matrix is normally a sparse matrix for large finite element 

problems. A sparse matrix is a matrix with few nonzeros usually situated 

close to the d

n 2.7. 

The global matrix can take on various shapes and orderings based

the node numberings and shape of the physical system.  For instance in 

Figure 10, the problem shape is a long bar with seven elements and a tota

32 nodes. The graph of the matrix is a narrow banded matrix (Figure 11) 

meaning the nonzero values are associated closely to the diagonal of the 

matrix. Figure 12 shows a three by three problem with six elements and 32

nodes. This matrix has a very different graph but has the same number of 

rows and although they are similar in size the performance changes in the 

multi-processor setting due to the extra communication between processors. 

Although this is not within the scope of this work, mesh generators and gr

theory play an impor

element proble
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Figure 11 Beam Representation and Matrix Graph 
 

Figure 12 Plate Representation and Matrix Graph 
 

2.6.3. 

 

 

 

Preconditioning/Solution 

Once the A matrix which has been assembled into the global matrix

form it can be solved. There are various ways to solve these large sparse

matrices. For large sparse matrices it is not feasible to produce an exact 

solution since this would take an infinite amount of time to compute. Instead 

there are various ways to converge on an approximation of the exact result
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O 

olvers allows for six various “solver” 

routines [1 .

imal residual 

adient with stabilization 

an be 

 

 

kage provides five methods of preconditioning. 

These pre

nomial 

• tion 

through the use of various iterative and projection methods. The AztecO

package within the Trilinos set of s

7]  These routines are: 

• AZ_cg- Conjugate gradient 

• AZ_gmres- Restarted generalized min

• AZ_cgs- Conjugate gradient squared 

• AZ_tfqmr- Transpose-free quasi-minimal residual 

• AZ_bicgstab- Bi-conjugate gr

• AZ_lu- Sparse Direct Solver 

These routines provide various techniques for converging on the exact 

solution to the matrix-vector equations (Equation 1). These equations c

preconditioned to allow for faster convergence. Preconditioning these 

equations in matrix form requires another matrix (preconditioning matrix) to be

multiplied in order to achieve faster convergence and is beyond the scope of

this work. The AztecOO pac

conditioners are: 

• AZ_Jacobi- k step Jacobi  

• AZ_Neumann- Neumann series poly

• AZ_ls- Least-squares polynomial 

AZ_symm_GS- Non-overlapping domain decomposi

(additive Schwartz) k step symmetric Gauss-Siedel 
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e in the AztecOO package, 

t within the Trilinos solvers, such as a multi-

level p

 

al 

le will 

e element 

stiffness matrices. Figures 13-15 show the example implemented in 

COSMOS which is a finite element solver used in Solidworks. 

 

• AZ_dom_decomp- Domain decomposition preconditioner 

(additive Schwartz) 

Although these are the preconditioners availabl

various other preconditioners exis

reconditioner found in the ML package.  

2.6.4. Finite Element Example  

An example of finite element analysis is helpful in understanding the 

process of computing the final result in a finite element problem and proved

extremely useful in understanding performance analysis data from our actu

study of the representative application used in this work. This examp

show how the assembly of the global matrix takes place from th

 

Figure 13 Cosmos Example 
 

 

Figure 14 Cosmos Elements 
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Figure 15 Cosmos Final Solution 
 

In these figures the example is a beam shaped object with one side 

fixed and the other with a force of 500 ft-lbs in the opposite direction. The 

elements used within COSMOS are a tetrahedral shape and in this test 

problem there are a total of 848 elements and 1563 nodes. As seen in Figure 

12 there is a displacement on the right of the figure due to the force of 500 

lbs. The example that is shown next is a simplified version of the actual 

computation of the elements and how the elements are assembled to 

represent the whole system that is shown in the COSMOS example. The 

differences in this example and the COSMOS example are that the elements 

are triangular in shape as opposed to tetrahedral and the example is two-

dimensional. Figure 16 shows the layout of the beam and the location on the 

“xy” plane.  



 

Figure 16 Thin Plate Example 
 

This example shown in Figure 16  is a structural analysis problem of a 

thin plate with dimensions 6 feet wide, 10 feet long, and 1 inch thick. It is fixed 

along the y axis and is acting under pure tensile loads of 100 kips each, 

applied at two corners. This problem is trying to solve for the displacements in 

the x and y directions. Some other information that is needed to solve the 

finite element method of the plate is Young’s modulus and Poisson’s ratio 

values of 30,000 and 0.5, respectfully. The structure is already split into four 

elements label 1-4 with five nodes labeled 1-5. The governing matrix equation 

for the analysis of the structure is given by Equation 2: 

}{}]{[ QK =∂  Equation 2 

where the global stiffness matrix [K] is defined by Equation 3 which is the sum 

of each individual element’s stiffness matrix: 
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∑=
n

kK
1

][][   Equation 3 

The expression that defines the element stiffness matrix [K] is given by 

Equation 4 which is derived from an equilibrium equation in structural 

analysis. Its explanation is beyond the scope of this work but is expressed as: 

2
}]{[}{][ dydxtBDBk T ⋅

⋅⋅=  Equation 4 

The displacement-strain matrix {B} is defined for a triangular element defined 

by nodes i, j, m and is expresses in Equation 5, in which xi, xj, xm, yi, yj, and ym  

are the nodal coordinates in the “xy” plane of nodes i, j, and m, respectfully. 

The thickness of the plate is defined by t in Equation 4 and the area of the 

element is given by A in Equation 5 which is also equal to twice the value of 

. dydx ⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−
−−−

−−−
=

yjyixixjyiymxmxiymyjxjxm
xixjxmxixjxm

yjyiyiymymyj

A
B 000

000

2
1}{  Equation 5 

 
The elasticity matrix for a plane stress analysis problem in a two-dimensional 

setting is given by Equation 6 and its derivation is also beyond the scope of 

this work. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

2
100

01
01

1
}{ 2 v

v
v

v
ED  Equation 6 

The general nodal displacement matrix {∂} is shown in terms of u and v which 

correlate to x and y, respectfully. The term u1 in Equation 7 correlates to the 
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“x” displacement for node 1 and v1 correlates to the “y” displacement for node 

1 and so on.  

⎪
⎪
⎪
⎪
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⎪

⎨

⎧

=∂

5

5

4

4

3

3

2

2

1

1

}{

v
u
v
u
v
u
v
u
v
u

 Equation 7 

 
The boundary condition of 100 kips is applied to nodes 4 and 5 as defined in 

Figure 16 and is illustrated by the Equation 8 in which the terms also correlate 

to the terms in Equation 7. 

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭
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⎪
⎪
⎪
⎪
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⎪
⎪
⎪
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⎩
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⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

0
100

0
100

0
0
0
0
0
0

}{Q

 Equation 8 

 
The generation of the global stiffness matrix is achieved by computing the 

stiffness matrix associated with each element and then assembling them into 

the global matrix. Figure 17 shows the coordinates of the nodal points of the 

structure. 
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Figure 17 Thin Plate Nodal Coordinates 
 
 The generation of element stiffness matrix is shown only for element 1 as 

each other element is found using the same method. The displacement-strain 

matrix {B} of element 1 is shown below. 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−−
−

−−

⋅⋅
=

3560)63(5
500050
03060)63(

144302
12}{B  Equation 9 

 
Equation 9 shows the displacement-strain matrix with the area equal to 30 

times one inch (12/144) and the values of xi, xj, xm, yi, yj, and ym are the 

coordinates in the “xy” plane shown in Figure 17. Equation 10 shows the 

simplification of Equation 9: 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−−
−

−−
=

356035
500050
030603

720
1}{B  Equation 10 

 
The elasticity matrix [D] (Equation 11) is shown using Young’s modulus (E in 

Equation 6) and Poisson’s ratio (v in Equation 6). 
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⎥
⎥
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⎥

⎦

⎤

⎢
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⎡

−−
=

2
5.0100

015.0
05.01

)5.0(1
30000}{ 2D

 Equation 11 

 
Equation 11 simplifies to the following matrix form of Equation 12: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

25.000
015.0
05.01

75.0
30000}{D  Equation 12 

 
The calculation of the element stiffness matrix is determined by Equation 13: 

AtBDBk T ⋅⋅= }]{[}{][ 1  Equation 13 

 
The constants of the matrix multiplication are precomputed in Equation 14: 

( ) 67.166
2
144651
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1 2
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⎛ xx  Equation 14 

 
Equation 15 shows the substitution of the values of the matrices B and D in 

Equation 13: 
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Equation 15 simplifies to Equation 16: 
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 Equation 16 

 
And further to Equation 17: 
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15180361518
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)67.166(][ 1k

 Equation 17 

The contributions of Kij (nodes) to the global matrix are shown below with 

each being a 2x2 matrix corresponding to 2 degrees of freedom, one in the x 

direction and the other in the y direction. Recall degrees of freedom represent 

a variable within the problem that can represent direction, velocity, 

displacement, or any other physical variable that needed to solve these finite 

element problems. 

For element 1: 
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For element 2: 
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For element 3: 
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For element 4: 
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Once all the element stiffness matrices have been found the assembly 

process can begin by summing all the contributions according to the 

following: 
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Each term in Equation 19 contributes a 2x2 matrix to the final matrix. Only the 

nodes that are shared between elements will need to be summed. The global 

stiffness matrix is shown in Equation 19 which is a 10x10 matrix because 

there are five nodes each with two degrees of freedom for all the elements: 
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The computation of the nodal displacements, {∂}, is based on Equation 20: 

}{][}{ 1 QK −=∂   Equation 20 
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Because nodes 1 and 2 are fixed, the stiffness matrix is reduced to a 6x6 

matrix. The other unknown displacements are computed with the previous 

equation. The reduced inverted stiffness matrix is shown below as: 
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This problem demonstrates the basic method of finite element analysis 

through solving a basic a simple structural analysis example. Changing the 

problem from triangular elements to hexahedral adds more complexity and 

the matrix size is much larger because each element now has eight nodes 

instead of three. So for this problem to be changed to hexahedral elements 

the number of nodes per element would change from three to eight and since 

there were two degrees of freedom, each element would contribute a 16x16 

matrix to the global stiffness matrix instead of a 6x6 matrix as shown with the 

triangular elements. 
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2.7. Sparse Matrices 

Sparse matrices are matrices that have few nonzero terms compared 

to zero terms, usually situated close to the diagonal of the matrix. Sparse 

matrices arise in many scientific/engineering applications. Some of the 

applications are structural analysis, networks, and fluid-flow. In Equation 24, 

}]{[}{ xAf =  Equation 24 

 
the “A” matrix is usually a sparse matrix in the application of Finite Element 

Analysis as seen in Section 3.6.4 and is also the main operation in many 

different iterative solvers such as Preconditioned Conjugate Gradient method. 

The benefit of sparse matrices is that only the nonzero terms and their 

locations need to be saved. There are several ways to store a sparse matrix 

as discussed in the next section. 

2.7.1. Storage Schemes 

The first and most obvious is the use of three arrays one for the 

column, another for the row, and finally one for the data. The types of these 

arrays are integer, integer, and double, respectively in most cases. Shown in 

Table 3 is an example of the column-row technique called coordinate format. 

This is shown in Table 2 using zero indexing [18]. The coordinate format 

shown in Table 3 is a format where the row and column locations of only 

nonzeros are stored. For example, the term “3.0” found in row one and 

column one of Table 2 (using zero indexing) is represented by a “1” in i-index, 

a “1” in j-index, and a “3.0” in value [all in location two of there respective 
 36
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arrays]. All of the other non-zero elements in Table 2 can be represented by 

the three arrays in Table 3 in a similar manner. 

 

Table 2 Example Matrix for Sparse Storage Schemes 
1.0         0          0         2.0         0          0 
 0         3.0         0          0         4.0         0 
 0          0         5.0         0          0          0 
6.0         0          0         7.0         0         8.0 

 
Table 3 Example Sparse Matrix Coordinate Format Storage 

i-index = (    3,    1,    0,     3,     2,    0,     1,    3  ),
 j-index =(    5,    1,    3,     3,     2,    0,     4,    0  ),
 value  = (   8.0,  3.0,  2.0,   7.0,   5.0,  1.0,   4.0,  6.0 ) 

 
 

Next is a storage-by-row technique called compressed row storage 

(CRS) which also consists of three arrays of the same type as the coordinate 

format. The only difference is that the row array is compressed to only contain 

pointers to the first non-zero data entry in each row contained in the data 

array. The only array that changes compared to the coordinate format shown 

above is the i-pointer array. The i-pointer for CRS format points to the location 

within the j-index array that is the first nonzero of each row.  For example, the 

second term in i-pointer points to value “1” (remember zero indexing) in j-

index so one would know when the next row began. Table 4 shows this 

technique. There also is a technique called compressed column storage that 

is implemented in a similar manner, except the column array is compressed 

rather than the row array as in the CRS format. 
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Table 4 Example Sparse Matrix CRS Format Storage 
i-pointer = ( 0, 2, 4, 5, 8 ), 
j-index = (  0,   3,   1,   4,   2,   0,   3,   5 ), 
 value  = ( 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ) 

 
The last method is called variable block row format (VBR) which is 

used when there are large portions of the matrix that can be divided into 

smaller dense matrices (Table 5). This method has six arrays to hold the 

various information. The first array (row-pointer) is an integer array that holds 

pointers to the boundaries of the block rows (Table 6). The next array (column 

pointer) is also an integer array that holds pointers to the boundaries of the 

block column. Another array (value) is an array of doubles that contains the 

block entries of the matrix. Another integer array (index) holds the pointers to 

the beginning of each block entry stored in the value array. An integer array 

(block-index) contains the block column indices of the block entries (Table 7) 

in the matrix. The final array (block-pointer) contains pointers to the beginning 

of each block row in block-index and the value arrays. This method is the 

most difficult to implement and is shown graphically in Tables 5-6.  

Table 5 Example VBR Matrix 
     0    1     2    3     4      5     6    7   8 
  +----------+----------------+------+-----------+ 
0 | 1.0  2.0 |                |  3.0 |           | 
1 | 4.0  5.0 |                |  6.0 |           | 
  +----------+----------------+------+-----------+ 
2 |          | 7.0  8.0   9.0 | 10.0 |           | 
  +----------+----------------+------+-----------+ 
3 |          |                | 11.0 | 12.0 13.0 | 
4 |          |                | 14.0 | 15.0 16.0 | 
5 |          |                | 17.0 | 18.0 19.0 | 
  +----------+----------------+------+-----------+ 
6 
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Table 6 Example VBR Storage Matrix 
Row pointer  = (0, 2, 3, 6) 
Column pointer  = (0, 2, 5, 6, 8) 
Block pointer  = (0, 2, 4, 6) 
Block index = (0, 2, 1, 2, 2, 3) 
index  = (0, 4, 6, 9, 10, 13, 19) 
value   = (1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 8.0, 9.0, 
         10.0, 11.0, 14.0, 17.0, 12.0, 15.0, 18.0, 
         13.0, 16.0, 19.0) 

 

Table 7 Block Representation of Matrix 
    0    1    2    3    4
  +----+----+----+----+ 
0 | b0 |    | b1 |    | 
  +----+----+----+----+ 
1 |    | b2 | b3 |    | 
  +----+----+----+----+ 
2 |    |    | b4 | b5 | 
  +----+----+----+----+ 
3 

 

To understand the VBR technique of storing sparse matrices let us look at the 

example of accessing the block row 1 in Table 5. First a lookup in the block 

pointer array and is needed to see where block row one appears in this case 

it is block pointer [1] = 2. This indicates that block two (b2) in Table 7 contains 

the first nonzero block from block row one and that it is from block column 

one as indicated by block index [block pointer [1]] =1. Second the block 

pointer [1] also indexes into index. That is index [block pointer [1]] = index [2] 

6 = which points to value [6]. This is equal to value [index [block pointer [1]] 

=value [index [2]]. Where 6 is the location in value where the element, 7.0, is 

located.  



 40

3. RELATED WORK 

There are various other works that have studied similar material 

relevant to this work. This section is organized by topic. First is some related 

work on the performance of Sparse Matrices, then finite element research, 

and finally performance studies on the Itanium 2. 

3.1. Performance of Sparse Matrices 

The performance of sparse matrix operations depends primarily on the 

memory hierarchy of the microarchitecture. Taylor [19] has studied the 

performance of these operations and has concluded that various memory 

organizations maximize the performance of sparse-matrix operations. Sparse 

matrices are stored in compressed form in which one data structure points to 

the position of the matrix data in another data structure. This form of indirect 

addressing allows the cache to be very effective for storing the data because 

of the spatial-temporal locality of the accesses. Spatial locality means that if a 

location in memory is accessed the datum that is close to that location is likely 

to be used in the near future. The term temporal locality states that if a 

location in memory/cache has been accessed recently it is likely to be reused 

in the near future (i.e., looping). The study by Taylor concluded that to 

maximize the performance of these sparse matrix problems, the cache 

organization would have to possess the following characteristics: 

• Direct-Mapped Cache 
• Cache Size of at least 1K words or 8K bytes 
• Write-back Policy 
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• Pipeline depth for write equal to 2 (to allow for one-cycle 
minimal write for multi-word block) 

• Block size equal to 16 words 
• Invalidate data on a read 
• 2 interface ports -1 read, 1 write 
• 2 phase-clock to allow for simultaneous read and write 
 

Another study by Temam and Jalby describes the performance of 

sparse algorithms on caches [20]. They concluded that cache size and the 

bandwidth of the matrix are closely dependent. When the bandwidth of the 

matrix is smaller than the cache size, spatial and temporal locality is well 

exploited with their scientific application. On the other hand, when the 

bandwidth is greater than the cache size, self and cross-interference degrade 

the reuse of the vector x, meaning the data within x gets overwritten by the 

vector x or the data within the A matrix before it gets reused. Also they report 

a performance increase when the line size is sufficiently large (around 128 

bytes), exploiting the potential locality of the vector x especially in 3-

dimensional finite element problems such as cube3 where the vector x is 

used more than in the 2-dimensional case.   

3.2.  Finite Element Research 

Finite element workloads have been used as the basis for performance 

studies in other related works. The finite element workloads have mainly been 

studied at the multiprocessor level as of late because they can scale on 

multiple processors due the intrinsic value of matrix operations, such as [21] 

in which they design a high performance, high efficiency multi-processor 

computing engine for dynamic finite element analysis. In [22] they use a finite 
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element workload called DYFESM, which is a structural dynamics code which 

implements a finite element model using 8 stress and 5 displacement degrees 

of freedom per node. Within this problem they characterized the dominate 

loops and correlated the loops to the loop-based Livermoore Fortran Kernels 

Benchmark. They found that the dominate subroutine was for a 

preconditioned conjugate gradient solver in which it was performing a matrix-

vector multiply.  In [23] they conclude that the performance of the 3-D TGM 

finite element solver is directly related to the linear system solver, in which 

they found the conjugate gradient algorithm to be the most optimal which 

uses the same matrix-vector multiply found in [22]. To fully utilize the 

resources of an architecture running a application that contains the matrix-

vector multiply found in these finite element workloads Taylor et al. propose 

an efficient scheme for storing sparse matrices and through the use of added 

hardware to the architecture to help in efficiently executing the proposed data 

structure. They demonstrated a 96% utilization of the floating-point units [24].  

Also Vuduc et al. of UC Berkley discuss performance optimizations and 

bounds for a sparse matrix-vector multiply in which the results suggest that 

future performance improvements will come from two sources: 1) 

consideration of higher-level matrix structures, and 2) optimizing kernels with 

more opportunity for data reuse through higher level techniques [25]. 
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3.3. Itanium 2 Performance Studies 

The Itanium 2 microarchitecture is a newer architecture in which the 

basis for design was to maximize the performance of scientific applications 

that are mainly floating-point workloads. As seen by Purkayastha et al. [26] 

the floating-point performance of the Linpack benchmark on the Itanium 2 

dominated the studies of modern 64-bit architectures (AMD Opteron, Apple 

G5) in which they uses a highly optimized Goto BLAS library.  Also within the 

performance study in [26], they ran benchmarks of a 3d finite element code 

(MGF) and it also performed the best on the Itanium. Griem et al. also studied 

the Itanium 2 and propose a synthetic workload consisting of a sparse matrix-

vector multiply to determine various characteristics of various other 

architectures besides the Itanium 2 [3]. The results of their studies state that 

because of the inability of the Itanium 2’s L1 data cache to store floating-point 

variables some delays occur due to the register spills of larger working sets. 

But the Itanium 2 was able to hide memory latencies using a large register set 

and deep explicit prefetch queues.   

Although many benchmarks contain some form of a finite element 

problem no current research has been found that focuses on uni-processor 

performance characterization of these finite element workloads that does not 

discuss the performance of the sparse matrix-vector multiply. Our research 

looks further into performance analysis of the Itanium 2 microarchitecture and 

how maximum performance may be achieved. 
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4. THESIS PROBLEM 

The motivation for the work is to understand how this finite element 

application, “Cube3”, actually goes about creating and solving a system of 

equations and the performance characteristics associated with the 

application. By studying this application on the Itanium 2, which has the 

potential to perform well due to the large cache hierarchy and functional units, 

we hope to pin-point a performance bottleneck that can easily be identified 

and modified, be it hardware or software, which will lead to a performance 

improvement. Also, by studying “Cube3” on the Itanium 2 some micro-

architectural characteristics can be used in future work of creating an analytic 

model used in a multi-processor model used at Sandia National Laboratories. 

This analytic model will be used in the future to help in the decision of what 

type of processor will have the best performance benefits used in the next 

generation of supercomputers. 
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5. WORKLOAD 

National laboratories have some of the largest and most costly 

supercomputers ever designed and built. Because of the high cost of design 

and construction some studies of the workload executed on these computers 

are needed to understand how they spend most of their execution time. 

Bradley et al. [27] have studied the types of applications running on their 

system and have shown that the greatest amount of computing time has been 

in scientific workloads such as Finite element and physics based applications. 

Most of these programs use matrix operations which solve large numbers of 

differential equations. Therefore, a representative workload should include 

matrix assembly and various techniques of solving these matrices.  

A workload that is intended to be representative of the many scientific 

codes was chosen as a basis of all scientific workloads at Sandia National 

Laboratories. This workload is a Finite Element problem that allows the user 

to specify various different techniques to solve the problem. The workload is 

described in detail in the next section. The overall study of this workload is to 

better understand the workloads on National Laboratories computers and also 

to provide information on what type of microarchitecture will maximize the 

performance of these types of applications.  

5.1. The “Cube3” Application 

The application chosen for this performance study is a Finite Element 

test problem, called “Cube3,” written and provided by Alan Williams of Sandia 



National Laboratories in Albuquerque, New Mexico. “Cube3” is a test problem 

of a finite element interface (FEI) written as an abstraction layer between 

engineering/scientific software and math solvers [28]. The FEI is a linear 

system assembly library used for assembling sparse matrices in applications 

that use unstructured meshes. The finite element interface provides a layer of 

software to allow applications the ability to switch between various solvers 

without changing application code. The various linear solvers that can be 

used by the finite element interface are Trilinos, PETSc, FETI-DP, HYPRE, 

SPOOLES, Prometheus, and others. The “Cube3” test problem is an arbitrary 

problem written to test the performance of linear system assembly and 

solution. Although “Cube3” only mimics a finite-element problem it was 

chosen to represent Sandia’s workloads because of its simplicity and the 

genuineness of the assembly and solve processes within the “Cube3” 

workload. The test problem mimics a finite element application because it 

imitates the data produced from an application operating on a mesh of 8-node 

hexahedral elements (shown in Figure 18).  The nodes are represented at 

each corner of the hexahedral element. 

 
Figure 18 Hexahedral Element 
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The number of elements can be varied based on width, depth, and 

degrees of freedom based upon an input file used by the “Cube3” test 

problem which can be found in the Appendix.  These degrees of freedom 

represent physical attributes such as pressure, temperature, velocity, or any 

other physical phenomenon that one wishes to compute. The number of 

elements is calculated by (width) · (width) · (depth). Figure 19 shows a 

graphical representation of a width equal to three and a depth of one. 

 

Figure 19 3x3x1 Hexahedral Elements 
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The number of equations in the linear system is equal to the number of 

nodes multiplied by the number of degrees of freedom per node where the 

number of nodes is equal to (“width”+1) · (“width”+1) · (“depth”+1). As stated 

above, each node can be defined to have a specified number of degrees of 
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freedom. This test problem usually runs on large multi-processor systems 

using a MPI (Message Passing Interface) to achieve better performance. In 

the parallel setting this problem is spilt across the depth of the cube. In other 

words the depth is divided by the number of processors specified during 

runtime. The shared nodes, which are nodes at the boundary of where the 

problem is split, appear on both of the processors. The “Cube3” workload 

provides a good test problem of the various underlying solvers and the how 

the problem is assembled, which is a major reason for use as a 

representative workload.  



6. METHODOLOGY 

The performance study of the representative workload, “Cube3,” is 

determined first by establishing a problem size that will be studied. The 

problem size should be chosen to maximize the utilization of the cache under 

study, in this case the cache of the Itanium 2. The cache statistics collected 

by the performance-monitoring unit decide what problem size to study since 

the data of the matrix and vectors of the Finite Element problem need to be 

held in the memory hierarchy to maximize the performance of the application. 

By executing “Cube3” with various problem sizes, we identify a size 

sufficiently large enough such that the working set can not be fully held in 

cache. The first step in varying problem size is to determine a maximum 

number of equations that can successfully complete on the Itanium 2 

microarchitecture. Once a maximum value is found, then problem size studies 

are conducted based on varying the problem size via the input file to “Cube3”. 

These values are calculated by Equation 25 described in Section 5.1: 

 
)()1()1()1( dofdwwequations ⋅+⋅+⋅+=   Equation 25 

After determining an appropriate problem size, various studies during 

runtime are performed to understand more about the “Cube3” application. 

These studies include studying the various phases throughout the execution 

of “Cube3.” This is conducted through the use of call graph and profile results 

in correlation to the interval data collected throughout the execution of 

“Cube3.” Vtune is used to generate the call graph data and profile data. The 
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interval IPC graphs are achieved through the use of the PERFMON software 

by outputting the number of cycles completed every one million instructions 

and then resetting the counter so that it is no longer a cumulative counter. 

This will give a list of the number of CPU cycles every one million instructions. 

By graphing the interval IPC data the phases with poor performance can be 

located by low segments of the IPC. 

Experiments are then conducted on how varying the shape of an 

object that “Cube3” is studying will effect the various phases of execution. By 

holding the number of equations constant for a few different shapes (i.e. 

beam, cube, or thin plate) various performance attributes can be studied. 

Instruction mix of the shape under study is also collected to help to categorize 

the application as an integer or floating-point application and how the shape 

effects the instruction mix. In addition, cache statistics are studied to 

understand if the shape of object changes the cache miss rates. These 

studies help in understanding the application as the problem changes as it 

does in a real world application. 

Once an overall understanding of the “Cube3” application is achieved a 

detailed performance study is conducted based on the problem size studies. 

The performance study is conducted using stall counters within the Itanium 2 

microarchitecture. To determine where the stalls in the pipeline occur Jarp 

[29] has determined a methodology for performing bubble analysis on the 

Itanium microarchitectures using the hardware performance counters. This 
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methodology provides a top-down approach to identify and understand 

bottlenecks in the micro-architecture. This bubble analysis methodology 

allows a user to determine if the major cause of performance degradation is 

due to data cache stalls, branch misprediction, instruction miss stalls, floating-

point unit stalls, general register scoreboarding, or front-end flushes. Through 

this global stall analysis, we can identify problem areas in the micro-

architecture.  

The methodology of this bubble analysis examines all the stall 

contributions in the pipeline and then allows for further exploration of those 

major stall contributions. The first step in determining a bottleneck using 

Jarp’s approach is to consider all stall cycles and determine the cause of the 

stall. The Itanium 2 micro-architecture has two major components, the front-

end (instruction decode and dispatch) and the back-end (execution). Within 

the Itanium 2 microarchitecture there are five main units which can cause 

stalls:  

• Back-end stalls caused by an exception/interruption or branch 

misprediction flush (PMU event be_flush_bubble_all) 

• Back-end stalls due to Level 1 data cache or Floating Point Unit 

(be_l1d_fpu_bubble_all) 

• Back-end stalls due to the execution stage of the pipeline 

(be_exe_bubble_all)  
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• Back-end stalls due to the register stack engine 

(be_rse_bubble_all) 

•  Back-end stalls due to the Front-End (be_exe_bubble_fe). 

Within each of these categories are vary sub-counters to provide a finer 

granularity of the stall causes. The stall counters and their sub-counters are 

shown in Table 10. The major contributions of the second sub-counter of 

“Cube3” will be described in detail in the results section. 

Table 8 Itanium 2 Stall Counters 
Total Stall 
Counter Sub-Counter Second Sub-Counter 

Be_flush_bubble_bru 
Be_flush_bubble_xpn Be_flush_bubble_all 
 
Be_L1d_fpu_bubble_l1d 
Be_L1d_fpu_bubble_l1d_dcurecir 
Be_L1d_fpu_bubble_L1d_tlb 
Be_L1d_fpu_bubble_L1d_stbufrecir 
Be_L1d_fpu_bubble_L1d_fullstbuf 
Be_L1d_fpu_bubble_L1d_L2bpress 
Be_L1d_fpu_bubble_fpu 

Be_L1d_fpu_bubble_all

  
Be_exe_bubble_grall 
Be_exe_bubble_grgr 
Be_exe_bubble_frall 
Be_exe_arcr_pr_cancel_bank 

Be_exe_bubble_all 

 
Be_rse_bubble_overflow 
Be_rse_bubble_underflow Be_rse_bubble_all 
  

Back_end_bubble_all 

Back_end_bubble_fe none 
 

 

“Cube3” also has the ability to change the various solver algorithms 

used to solve the linear system through the use of the AztecOO package 

within Trilinos. By varying the different methods of solving the “Cube3” 

problem, a comparison of the solvers is performed to see the benefits of 
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each. This could lead to performance improvements of one or all due to the 

various solution methods performance characteristics. This is done through 

the use of the call graph/ profile data and the use of the interval data. Also, 

“Cube3” has the ability to change various storage methods (Crs and Vbr) 

through the input file as well as changing from the use of no preconditioner to 

the use of various preconditioners. A comparative analysis of the various 

methods will help to understand the different characteristics of each. This 

study will also use the interval IPC data to understand the changes in the 

phases and to see the performance benefits of each.  

The Itanium 2 is a VLIW microarchitecture which is an in-order core 

which relies on the compiler to perform all scheduling of parallel instructions. 

This means that the performance of applications relies mainly on the compiler 

in use. A comparative analysis is needed to see which compiler performs the 

best on the Itanium 2. The two compilers available on our Itanium 2 are the 

Intel Icc compiler and the Gnu Gcc compiler.  

Throughout the performance analysis of “Cube3” a problem section of 

the code is determined within the solve phase of execution. Some 

optimizations to the code were implemented in conjunction with some 

compiler optimizations to see if performance gains are achievable within the 

compilers in use. The results of these studies are also presented in the 

results section. 
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7. RESULTS 

The results section of this work present the work necessary to 

understand “Cube3” as well as understand the performance of it. Section 2 of 

the results helps in the understanding of “Cube3” whereas Sections 3 through 

5 are focused on the performance associated with “Cube3” on the Itanium 2. 

7.1. Problem Size 

We began the problem size studies on the Itanium 2 microarchitecture 

by choosing a large cube size of width 72, depth 72 and six degrees of 

freedom which calculated to a total number of equations equal to 2,334,102. 

With this problem size the Itanium 2 ran out of memory so the study was 

backed down to a maximum number of equations of about half the size of 

72x72x6 which was around one million equations. With a maximum problem 

size of one million equations the problem size was great enough to 

overwhelm the cache. For example a 100x100x1 problem size contains about 

27 million nonzeros which overwhelmed the L3 cache of size 1.5 Meg. This 

number was large enough to alleviate any cold start misses and stress the 

cache hierarchy sufficiently. Various configurations of width and depth and 

degrees of freedom were calculated to have a maximum of one million 

equations. The only study that showed any conclusive data was the study of 

varying width with constant depth and degrees of freedom. Table 8 shows the 

problem sizes executed to get the plot found in Figure 20.  The rest of the 

problem size studies and plots are contained in the Appendix.  
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In Figure 20, one can see that the maximum IPC correlates with the 

minimization of the cache miss rates in the level 3 cache (Level 1 miss rates 

are not shown due to the fact that floating-point data bypasses the L1 cache 

and also because the PMU does not have a counter for L1 data). The 

maximum performance is at a point when the problem size is 300x1x1 which 

equates to 181,202 equations. From that point on the caches start having 

conflict misses due to the fact that the problem size was too large to be 

entirely held in cache and therefore needed data was getting overwritten by 

other data which increases the miss rate leading to performance degradation.  

The next study studied various problem sizes that have a maximum of 

around 180,000 equations because of the maximum IPC point was when 

there were around 180,000 equations in the study of problem size above. 

This study had inconclusive results (results shown in Appendix) because of 

the fact that all the studies of varying shape showed relatively the same 

statistics for IPC, L2 miss rates, and L3 miss rates as the problem shape was 

varied.  The problem sizes that were studied were of sizes 300x1x1 (181,202 

equations), 55x55x1 (175,616 equations), 45,000x1x1 (180,004 equations) 

due to the performance characteristics of various problem shapes shown in 

section 7.2.2. 

 



 

Figure 20 Vary Width CRS -IPC, L2&L3 Cache Stats  
 

Table 9 Problem Sizes for Figure 20 
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7.2. Runtime Description 

The performance analysis of the “Cube3” workload depends greatly on 

the understanding of what occurs throughout the execution of “Cube3.” This 

section provides some incite to what is happening throughout the execution of 

“Cube3.” This section also shows where the major performance degradation 

of “Cube3” occurs. 

7.2.1. Cube3 Phases 

First, to understand the workload itself we generated the call graph 

using Vtune. The call graph shows the various functions that “Cube3” calls 

from the main procedure (Figure 21).  There are twelve primary functions that 

the main function calls along with a few initialization functions that create a 

matrix graph and connectivity lists.  Figure 21 only shows the first level of 

function calls due to the complexity and abundance of function calls within 

“Cube3”. Also shown is the three functions where “Cube3” spends most of its 

execution time (insert, sum in, and multiply). 

 

Figure 21 Cube3 Call graph 
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 IPC interval data shows the “Cube3” phases of execution as seen in 

Figure 22. This figure shows the execution of a 55x55x1 problem size. We 

chose this size because the various phases are very evident throughout the 

execution. Figure 20 shows a low IPC execution phase toward the end of 

execution. To find out what part of the code is causing the performance 

degradation Vtune allows the user to map the call graph to the source code.  

 

Figure 22 55x55x1 Interval IPC 
 

The mapping of the call graph of Figure 21 and the execution data of 

Figure 22 is shown by Figure 23. There are three primary functions in which 
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“Cube3” workload spends most of its time: Create Matrix, Load Element Data, 

and Solve.  The poorest performing is obviously the solve phase, which will 

be discussed later in the compiler optimization section.  

 

Figure 23 Call graph Mapping to Interval IPC 
 

7.2.2.  Varying The Shape of Cube3 Problem 

These previous graphs are of a “Cube3” with CRS storage method 

using a GMRES solver. The following figures contained data generated by 

“Cube3” using a GMRES solver as we vary the problem shape and the 

storage method (CRS, VBR). In addition to Figure 22 (55x55x1), are two 
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graphs of which the shape has been varied from a cube to a beam to a plate. 

Figure 24 uses a beam (1x45000x1) and Figure 25 uses a plate (300x1x1).   

 

Figure 24 1x45000 Interval IPC 

 

Figure 25 300x1x1 Interval IPC 
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Figure 26 Vary Shapes - Interval IPC 
 
The relative performance characteristics change depending on the shape of 

the problem due to the connectivity of the nodes and elements and the 

number of the nonzeros within the matrix.  The 300x1x1 problem size seemed 

to utilize the cache the best in the results shown in Figure 20 in the previous 

section but studying the interval data it is clearly taking a lot longer than the 

other two problem shapes as evidenced by Figure 26. However, by studying 

the interval data graph and the call graph it seems that the time is spent in or 

before the creation of the matrix execution phase. This appears to be an 

anomaly and after coordinating with the author, we believe it is a problem with 

the code. The other two graphs of 55x55x1 and 1x45000x1 appear to have 
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the same execution phases but the beam (1x45000x1) completes much faster 

than the cube (55x55x1) due to the fact that the beam has more number of 

nonzeros in its “A” matrix. Talking further with the author of “Cube3” the actual 

performance depends on the number of nonzeros in the matrix and not the 

shape. Figure 26 shows the three shapes with the same x-axis to show the 

time spent completing each problem shape. Recall that these three problem 

shapes have approximately the same number of equations meaning the “A” 

matrices are about the same dimension but have different numbers of 

nonzeros. 

7.2.3. Varying Storage Techniques 

Section 3.7 described various methods of storing sparse matrices (Crs 

and Vbr). By varying the storage method from compressed row storage to 

variable block row techniques the performance can be seen in Figure 27 to 

affect the load element data phase of the “Cube3” workload. The variable 

block row storage method has poor performance for these sizes mainly 

because of the complexity involved in retrieving the data from the various 

arrays presented in Section 3.7. For “Cube3” the data within the “A” matrix is 

accessed row-wise and that is why the compressed row storage method is 

the most popular implementation of sparse matrix data structures because 

the data is stored row-wise.  



 

Figure 27 Crs and Vbr Methods 55x55x1 with Gmres Solver 
 

7.2.4. Runtime Statistics 

The instruction mix for the compress row storage method is shown in 

Figure 28. Due to the large amounts of data being manipulated the number of 

loads accounts for around 20 percent of the overall instruction mix. Also as 

can be seen from this data as the number of nonzeros increases (1x45000x1 

to 55x55x1) the percentage of floating-point operations increases. So as the 

“A” matrix becomes more dense the more floating-point intensive the 

application becomes. 
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CRS Instruction Mix
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Figure 28 Crs Instruction Mix 
 

The cache on the Itanium 2 should provide the best source of 

performance improvement over other architectures due to the large sizes of 

the caches. But to fully utilize the cache a problem size and shape must be 

chosen that stresses the cache (i.e. does not fit in the cache). This makes 

performance analysis difficult because depending on what a scientist is 

simulating, the problem size and shape changes. Table 9 shows the cache 

statistics for the three problem sizes. As shown in the table, 300x1x1 allows 

the cache to perform the best because the matrix creation process seems to 

be stuck allowing the cache miss rates to increase because it is accessing the 

same data. The variable block row storage method results are very similar to 
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the statistics found in Figure 28 and Table 9 and thus will not be shown here 

but can be found in the Appendix.   Studying Table 10 helps to explain why 

the IPC is lower for the other problem sizes as compared to that of the 

300x1x1 problem size. The IPC is lower because the miss rates are so high 

meaning that for most of the data being access a latency of 12+ cycles is 

encountered because the data has to be brought in from memory. The cache 

statistics reiterates that the problem size of 300x1x1 has an error as stated 

before and the other two problem sizes still do not take advantage of the 

caches due to their high L3 miss rates.  As a conclusion some future work still 

needs to be done to exercise the caches better which will be discussed the 

future work section. 

 
Table 10 Crs Cache Statistics 

Cache Statistics 
Crs w01_d45000_dof1 w55_d55_dof1 w300_d01_dof1 

L1I miss rate 3.33% 3.02% 0.55% 
L1I prefetch miss rate 17.10% 15.76% 17.64% 
L1D miss rate 3.96% 3.86% 11.06% 
        
L2 miss rate 3.22% 3.51% 4.77% 
L2D miss rate 3.49% 3.79% 4.68% 
L2I miss rate 0.26% 0.20% 9.78% 
        

L3 miss rate 92.33% 93.84% 8.42% 
L3D miss rate 93.11% 94.30% 7.66% 
        
Cycles/L2 data miss 380.42 352.08 129.99 
Cycles/L3 data miss 388.83 364.48 1476.13 

 

 



7.3. Bottleneck Analysis 

Using Jarp’s methodology an analysis of “Cube3” with the three 

problem shapes (cube, beam, and plate) was conducted. The results of the 

stall analysis are shown in Table 11. For the three shapes, the majority of the 

stalls (around 80+ %) occur in the execution stage of the pipeline.  

 
Table 11 Crs Stall Source 

 

 

To further understand the cause of these stalls in the execution stage 

of the pipeline more statistics need to be evaluated. Looking closer at the 

Back-end Execution-Stage, the stalls can be broken down into more detailed 

statistics by using the PMU events within the Be_exe_bubble event shown in 

Table 10. The PMU can monitor what is causing the stalls within the 

execution stage of the pipeline; the statistics that can be collected are:  

• Back-end stalls due to general register/general register or 

general register/load dependency (be_exe_bubble_grall),  

• Back-end stalls due to floating point register/floating point 

register or floating point register/load dependency 

(be_exe_bubble_frall), 
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•  Back-end stalls due to general register /general register 

dependency,  

• Stalls due to ARCR dependency, PR dependency, Cancelled 

Loads, or Bank Switching (arcr_pr_cancel_bank).  

These statistics are shown in Table 12. The results show that depending on 

the shape of the problem (1x45000x1 to 55x55x1), more importantly number 

of nonzeros, the number of stalls due to general register to load dependency 

decreases and floating point to load/floating point register to floating point 

register increases mainly because the number of floating-point operations 

increases when there are more nonzeros within the matrix.  

Table 12 Crs Execution Stage Stalls 

 

Grouping statistics to get a better understanding of the actual stall 

contributions from a global perspective give us the data shown in Table 13. 

Table 13 shows the contributions to each of the main causes of stalls; Table 

14 shows a breakdown of three greatest contributions of the stalls in Table 

13. The major cause of stalls is load integer and floating point dependency 

and/or floating point register floating point register dependency. However, 

Table 14 also shows that the branch stalls are due mainly to a branch 

misprediction bubbles (fe_bubble_bubble). Some of these stalls could be 
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alleviated with a bigger branch predictor such as a two-level tournament 

predictor. 

 
Table 13 Crs Global Stall Counts 

 

 

Table 14 Crs Major Stall Contributions 

 

 

7.4. Solution Techniques 

“Cube3” has the ability to change the solver algorithms used to solve 

the linear equations established by the finite element problem. To understand 

which solver allows for the fastest solve time a comparative analysis with and 

without the use of preconditioning is presented in this section.  Even though 
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the various algorithms used to solve these linear systems are beyond the 

scope of this work.  

7.4.1. Varying Solvers 

The AztecOO package in Trilinos provides various solvers as stated in 

Section 2.6.3. These solvers provide different iterative algorithms that allow 

convergence on the final solution of the linear system. Figure 29 shows the 

various interval data from the 55x55x1 problem size varying the different 

solvers. The 55x55x1 problem size is only shown because the execution 

phases can be seen distinctly and the changes in the solve phase can be 

determined. The results of using different solvers showed improvement only 

in the time spent in the solve phase due to faster convergence and not due to 

architecture performance improvements. All of the algorithms stated in 

section 2.6.3 all have the same characteristics in that they all use the same 

matrix-vector multiply; the only one that differed was the gmres solver which 

uses dgemv as a solver, which is a fortan Blas (Basic Linear Algebra 

Subprograms library used in many computer systems) function that performs 

matrix-vector multiply. The rest of the algorithms use a loop kernel within the 

AztecOO package of Trilinos which calculates the same matrix-vector multiply 

but is written in C++. Examining the performance data when using various 

solvers within AztecOO the only performance benefit is that some allow for 

faster solution convergence and hence fewer iterations are executed to 

converge on the final solution. The fastest performing solver is the conjugate 
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gradient method as shown in the lower graph of Figure 29. The slowest 

performing is the restarted general minimal residual (gmres), which is likely a 

result of the Blas libraries not being at an optimal level for the Itanium 2. The 

conjugate gradient method performed the best regardless of the problem 

shape as well as the Vbr storage format. Results are shown for the Vbr format 

in Appendix.  

7.4.2. Vary Preconditioners 

In addition to the solver algorithms, another method that allows for 

faster convergence on the final linear system solution is the method of matrix 

preconditioning. Preconditioning the matrix involves multiplying the “A” matrix 

by another matrix, which is called the precondition matrix, then that new 

matrix is sent to the solver. The various preconditioning methods that can be 

used by the “Cube3” workload are defined in the AztecOO solver library and 

also are stated in Section 2.6.3. Figure 30 is a graph that shows the 

performance of varying the preconditioners on a problem size of 55x55x1 

using the conjugate gradient solver. Throughout the executions the k-step 

Jacobi allowed for the fastest convergence using only one step. As seen in 

Figure 30 the k-step Jacobi only spends around 1.5 billion instructions in the 

solve phase as compared to no preconditioning which spends around 3 billion 

instructions in the solve phase. The worst performance was observed using 

the domain decomposition preconditioner, which took the longest to complete 



(almost 30 billion instructions just in the solve phase). The Vbr results concur 

with these results and can be found in the Appendix. 

 

 

Figure 29 Crs 55x55x1 Varying Solver Methods 
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Figure 30 Crs 55x55x1 Varying Preconditioners with CG solver 

 72



 73

7.5. Compiler Optimizations 

The Itanium 2 relies mainly on the compiler to achieve performance 

improvement over other architectures. The performance of the application 

under study depends greatly on the compiler and the compiler optimizations 

used on the application. This section of the work studies some of the benefits 

of each. 

7.5.1. Utilizing different Compilers 

The two compilers that are available for use on the Itanium 2 at NMSU are 

the Gnu Gcc compiler and the Intel Icc compiler. The Gcc compiler has some 

built in functions that allow for performance improvement of an application. 

Such compiler techniques as loop unrolling and prefetching loop data help to 

improve the performance of an application.  Loop unrolling is a concept that 

actually unrolls the loop iterations with the conjunction of register renaming so 

that the assembly code does not have any dependent instructions allowing 

the loops to run in parallel which improves the overall performance of this 

kernel. Prefetching loop data is a technique if supported by the architecture 

that issues prefetch instructions to fetch data used in large arrays to improve 

the performance of the loops. The Icc compiler does not have these 

capabilities available for ia64 instructions (64-bit Itanium instructions) but 

does have the capability to perform software pipelining that the Gcc compiler 

does not have. The technique of software pipelining is the method that a 

compiler uses by taking independent instructions from each iteration of the 



original loop and creates another loop that only contains independent 

instructions with some setup and closing instructions to complete the same 

process as the original loop. Figure 31 shows the performance of the problem 

size of 55x55x1 when compiled with Gcc with no compiler optimizations 

versus the Icc compiled workload with software pipelining available as per 

Jarp [30]. Figure 31 shows that there is no performance gain using the Icc 

compiler versus the Gcc compiler. One reason may be that the Icc compiler 

was not installed correctly and is reverting to the Gcc libraries. Some future 

work in this area is needed to determine if the Icc compiler is actually working 

correctly.  

 

Figure 31 Crs 55x55x1 Varying Gcc & Icc Compilers 
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7.5.2. Loop Optimizations 

The matrix vector multiplication is the primary cause of the poor 

performance found in the solve phase. This is due to instruction level 

dependency. Instruction level dependency is the term used when an 

subsequent instruction needs the data produced from an instruction before it. 

If the instruction that is needed is stalled in the pipeline because it is waiting 

for data from memory then the dependent instruction is stalled as well.  

Some changes to the code were needed in order to see if loop 

unrolling was actually being conducted in the compiler to achieve maximum 

performance of the loop. The changes to the code were implemented in the 

multiply kernel of the AztecOO package (Epetra_CrsMatrix.cpp). The loop is 

shown in the following: 

for(i = 0; i < NumMyRows_; i++) { 
      double sum = 0.0; 
      for(j = 0; j < NumEntries; j++) 
        sum += RowValues[j] * xp[RowIndices[j]]; 
 
      yp[i] = sum; 
 
    } 

 
We modified the code by putting a number within the looping structure 

in order to recompile with loop unrolling allowing a higher level of parallelism 

to be extracted in the compiler. Hard coding the number of rows 

(NumMyRows) to an actual number instead of a variable allows the compiler 

to know exactly how many loops to unroll whereas before it could not perform 

loop unrolling because the number is not known at compile time. Once the 

number is hard coded and recompiled, this will show if the compiler is able to 
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extract some parallelism through the use of loop unrolling techniques or 

software pipelining. The best performance increase would be to hardcode the 

number of entries per row of the matrix (NumEntries) but unfortunately this is 

a variable and can not be hardcoded. The use of profile guided optimization 

can perhaps help the performance of this kernel. The problem with these 

optimizations is that in a real-world problem the number of loop iterations is 

never known at compile time and profile guided optimizations take a lot of 

time to implement because two compilations are needed, one to collect data 

and one that uses the data collected. In future work, a dynamic way of 

improving this loop-kernel is needed to achieve the best overall performance 

improvement in the “Cube3” application. The next section shows some of the 

compiler optimization results of this loop kernel.  

7.5.2.1. Gcc vs. Gcc Optimized 

The Gcc compiler allows a user to compile an application using loop 

unrolling and loop prefetching. The performance improvement in the solve 

phase is small but noticeable as shown in Figure 32 due to the loop unrolling 

and loop prefetching optimizations. Figure 32 shows the gmres solution 

interval data improvement and Figure 33 show the CG solution which only 

uses the matrix-vector loop kernel of AztecOO. The runtime of the non-

optimized Gcc compilation (upper graph of Figure 33) using the conjugate 

gradient solver in CPU cycles was around 10 billion cycles and for the 

optimized Gcc compilation (lower graph of Figure 33) was around 8 billion 



cycles. This attributes to a 20% gain of the overall execution time in the 

“Cube3” application shown in Figure 33. 

 

Figure 32 Gcc with Gmres Solver vs. Loop-Unrolling 

 
Figure 33 Gcc with CG Solver vs. Loop-Unrolling 
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8. CONCLUSION 

The “Cube3” application proposed by Sandia National Laboratories as 

a representative workload of the scientific computing proved to be a difficult 

problem to study on the Itanium 2 microarchitecture.  It was a difficult problem 

due to the fact that the performance varies as the shape and size changes of 

the problem due to the number of nonzeros within the “A” matrix and also an 

error in the code was discovered and hindered results of the 300x1x1 

problem size. The error is currently being studied by the author of “Cube3.” 

When running “Cube3” on the Itanium 2 the only phase that consistently had 

poor performance was the solve phase. The section of the code that 

attributed to the poor performance of the solve phase was the matrix-vector 

multiply loop kernel found in the AztecOO package in Trilinos. As the problem 

size/number of nonzeros of the finite element problem increases the solve 

phase dominates the performance degradation of the application. Some 

studies were performed to improve the performance of this matrix-vector 

multiply kernel. The compiler techniques that were implemented to improve 

this kernel were: 

• Adding -fprefetch-loop-arrays option in Gcc 

• Adding -funroll-loops option in Gcc 

  Also, to minimize the execution time of the solve phase of the 

workload the use of the conjugate gradient algorithm with a k-step Jacobi 
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preconditioner proved to be the best in conjunction with the compiler options 

stated above. 

In conclusion, once a technique has been implemented to help the 

matrix-vector multiply improve its performance then all of the solvers within 

the AztecOO package of Trilinos will improve, as well as any other solvers 

which have a matrix-vector multiply loop kernel similar to that of AztecOO. If a 

technique is found in the future to further improve this loop kernel then the 

finite element workload will be more dependent on the architecture under 

study. But at the time of this work the overall bottleneck of “Cube3” was the 

loop kernel and not any of the characteristics of the Itanium 2 micro-

architecture. 
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9. FUTURE WORK 

To best maximize the performance of the “Cube3” workload some 

additional techniques need to be implemented to maximize the performance 

of the matrix-vector loop kernel. The techniques need to focus on alleviating 

some of the data dependency within the loop so that more parallelism can be 

extracted allowing more instructions to be executed in parallel. This can be 

achieved by performing studies only on the loop-kernel, alleviating a lot of 

time involved with compiling and running “Cube3.” Some future research on 

the Icc compiler is needed to see if it is implementing software pipelining 

correctly, which could possibly improve this loop kernel. Also, the proposal of 

additional hardware/software techniques can maybe improve the performance 

as well.  

Once the performance of the matrix-vector multiply has been 

improved, then the architecture of the Itanium 2 needs to be re-studied to 

determine how “Cube3” performs because as of now the Itanium 2 

architecture has not been stressed in any of the studies conducted. Also by 

running a workload of a dense matrix (all nonzeros) of different sizes can give 

more incite to the performance of the cache hierarchy and what problem size 

in terms of non-zeros in the matrix to choose to study the architecture to its 

fullest capability. 

 In addition to this performance analysis and future performance 

analysis studies, an analytic model needs to be implemented to help in the 
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multi-processor analytic model used by Sandia National Laboratories which 

could have parameters based on the performance of a matrix-vector multiply 

and the techniques that the architecture implements to maximize the 

parallelism because this tends to be the most relevant performance loss as a 

whole.



APPENDIX 



Problem Size Variation Graphs –CRS 
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Problem Shape Variation Graphs –CRS 
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VBR – Statistics/Graphs 

VBR Instruction Mix

0%

10%

20%

30%

40%

50%

60%

70%

1x45000x1
55x55x1
300x1x1

1x45000x1 15.667% 6.091% 16.239% 1.090% 60.913%
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300x1x1 15.084% 10.394% 15.151% 0.609% 58.762%
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Cache Statistics 
Vbr w01_d45000_dof1 w55_d55_dof1 w300_d01_dof1

L1I miss rate 4.15% 4.21% 1.89% 
L1I prefetch miss rate 20.28% 21.14% 21.06% 
L1D miss rate 7.60% 8.98% 10.58% 
        
L2 miss rate 3.19% 4.81% 4.60% 
L2D miss rate 3.47% 5.23% 4.63% 
L2I miss rate 0.15% 0.18% 1.93% 
        
L3 miss rate 96.79% 89.38% 33.34% 
L3D miss rate 97.34% 89.88% 31.59% 
Cycles/L2 data miss 395.28 303.00 183.99 
Cycles/L3 data miss 398.62 330.55 543.37 
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